

BOFG to Urea in the INITIATE project: industrial symbiosis between the steel and chemical industry

Eric van Dijk – Project Coordinator TNO, the Netherlands

March 4, 2024

37th

CRU Nitrogen + Syngas 2024 Conference & Exhibition

4-6 March 2024 • Gothenburg, Sweden

The INITIATE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958318

PUBLIC

INITIATE project concept and vision

CONCEPT

> Industrial symbiosis between iron and steel sector and ammonia/urea production

VISION

Create bankable case for a first commercial size demonstrator at a scale of 50 kt/y urea production capacity on the basis of BOFG

ROUTE

- > The INITIATE project takes all the steps required to develop the FOAK plant
 - Demonstration of continues production of NH₃ from BOFG at 2.5 t_{NH3}/d scale
 - Site identification
 - Business plan development
 - IP&R, ownership, collaboration

Multiple routes towards CO₂ neutrality

Why CCS and CCU in Iron and Steel ?

IN ALL SCENARIOS RELATED TO THE PARIS GOALS, CCS AND CCU PLAY A ROLE

Global CO₂ emissions reductions in the New Policies and Sustainable Development Scenarios

AN IMPORTANT REASON FOR THIS IS THAT OVER 25% OF CO_2 EMISSIONS ARE DIFFICULT TO AVOID WITH OTHER MEASURES

Enabling technologies

SORPTION ENHANCED WATER GAS SHIFT - SEWGS

- > TNO development
- Combining CO₂ separation with WGS reaction
- > Kisuma industrially sourced solid adsorbent
- > Optimizing N₂/N₂ while removing CO₂
- > Minimization of energy requirement

SUB-STOICHIOMETRIC NH₃ SYNTHESIS

- > NEXTCHEM development
- > Stami Green Ammonia converter 5 mtpd
- > Suitable for variable H_2/N_2 ratio
- > Simplification of knock-out and recycle
- More suitable for dynamics

INITIATE – Project structure

Nitrogen + Syngas 2024 Conference & Exhibition

Technology demonstration

PILOT CONSTRUCTION

- Capacity 400 Nm³/h BOFG for 2.6 t_{NH3}/d
- > Design finalized
- > Procurement and construction on-going

MAIN CHALLENGES

- Inflation driven cost increase
 - Scope reduction to 1.3 $t_{\rm NH3}/d$

Procurement and construction

Procurement and construction

Hoisting the WGS reactor into place Positioning of SEWGS reactor 1

Utility rooms installation

in production

Challenge: BOFG dynamics

ADVANCED CONTROL

- > Creation of digital twin for advanced control strategies
- > Quantification through piloting and TEA

Techno economic analysis

COMPARISON OF CASES

- Base Stand alone Steel and NH₃/Urea
-) Reference Stand alone Steel and NH₃/Urea with CCS
- > INITIATE Integrated Steel and NH₃/Urea with CC-S&U

small: BOFG large: BFG+BOFG

Techno economic analysis

UREA production cost can be significantly reduced and negative cost of CO₂ avoided achieved

Commercial implementation plan

long-term implementation plan approach

PMC SELECTION

- > Inventory of product-market combinations (PMCs)
- > Assessment through KPIs

USE CASES

- > Production of hydrogen and methanol ArcelorMittal
- > Production of ammonia and urea Stamicarbon

REFERENCE CASE

ArcelorMittal steel plant Ghent
5 Mt steel / yr
7.5 Mt BFG / yr available for CCU
4.5 Mt CO₂ reduction / yr

hydrogen, methanol, ammonia, urea

Key cost drivers and uncertainties

Steps towards the First of a Kind plant

- **Demonstration** pilot under construction
- **Site identification** inventory finalized, discussion on-going
- **Business plan** long term implementation plan
- > IP&R, ownership, collaboration exploitation of results

initiate-project.eu

The INITIATE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958318

Back-up slides

Base Case – commercial plant lay-outs

Reference Case - State-of-the-art commercially available plants with CO₂ capture technologies

Nitrogen + Syngas 2024 Conference & Exhibition

