

CO₂ Capture Process Integration

Final Modelling Step to Determine the Overall Plant KPIs

Nicola Zecca, Politecnico di Milano

26/09/2022

The INITIATE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958318

PUBLIC

Presentation outlines

1 General plant design criteria

2 Integration of CO₂ carbon capture technologies in the overall plant flowsheet: steps to be followed

3 An example: the INITIATE project

Plant design criteria

- Definition of the basis of design (BoD): assumptions, requirements and boundary conditions of the project
- Compression at low temperatures
- Heat exchange between sources at similar temperatures
- Exploitation of available waste heat
 - 1. minimizes the consumption of fossil fuels
 - 2. decreases the Primary Energy Consumption
 - 3. decreases the CO₂ emissions
 - 4. decreases the SPECCA
 - 5. increases the Carbon Avoidance of the system
 - 6. decreases the Cost of CO_2 Avoided

Presentation outlines

1 General plant design criteria

2 Integration of CO₂ carbon capture technologies in the overall plant flowsheet: steps to be followed

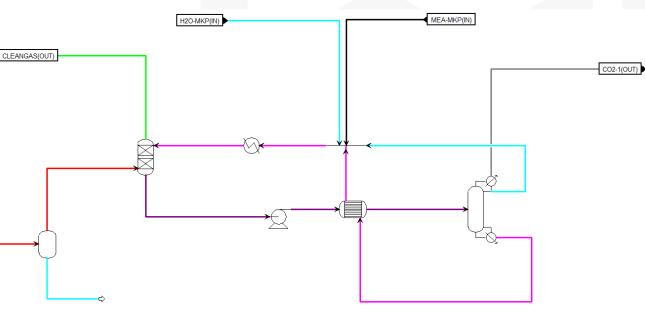
3 An example: the INITIATE project

Methodology

General steps to be followed

- 1. Definition of the condition to be met at the inlet of different equipment/sections of the plant (i.e. temperature, pressure, streams composition)
- First design and simulation of the plant without heat integration
 Preliminary heat and mass balances

3. Heat integration


- 1. minimize the energy consumption within the plant exploiting the available waste heat
- 2. use, when possible, the **decarbonized** streams as **fuel** to produce additional steam
- 3. if point 1 and 2 are not enough to fulfil the energy requirement, consider to supply heat with external sources (i.e. fossil fuels)
- 4. Calculation of the KPIs

Tools

- Integration of carbon capture technologies in the overall plant layout:
 - different technologies different energy requirements
- Tools: Aspen Plus
 - Model of the whole system to compute the energy requirement of a CO₂ capture process and to understand the best way to fulfil it

Example: Aspen Plus model of MEA carbon capture section

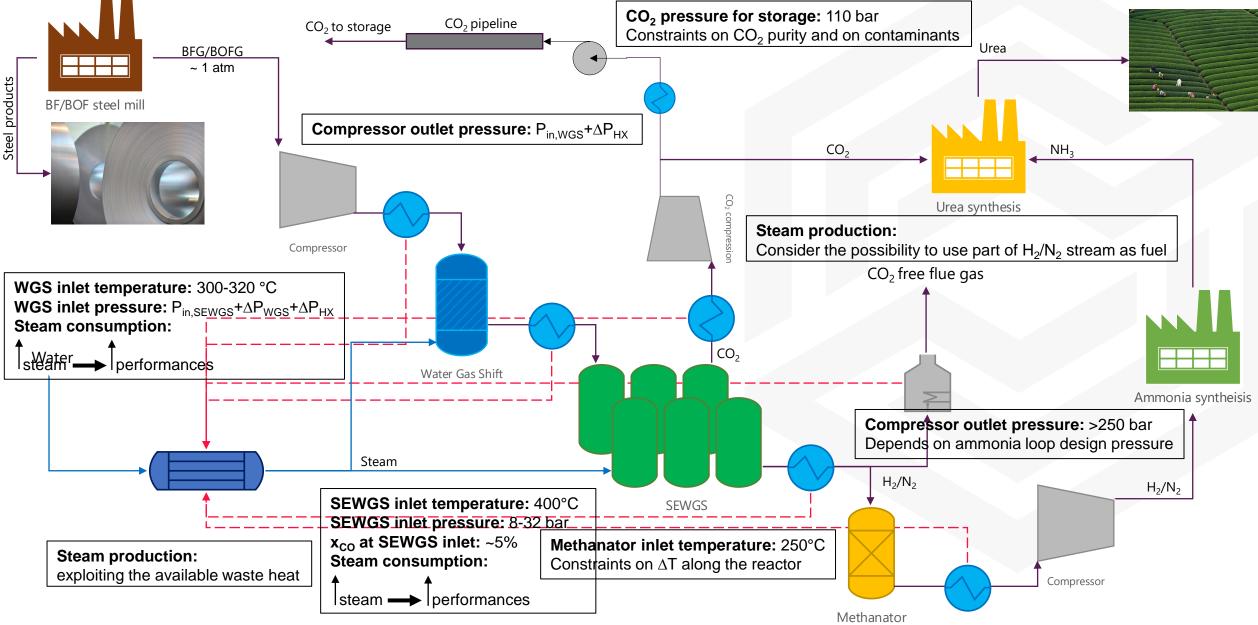
Presentation outlines

2 Integration of CO₂ carbon capture technologies in the overall plant flowsheet: steps to be followed

3 An example: the INITIATE project

A real case: the INITIATE project

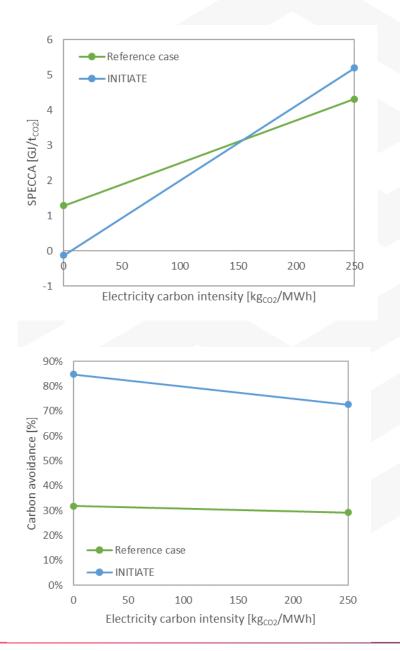
- Production of urea from residual steel gases instead from natural gas Industrial symbiosis
- Carbon capture technology: Sorption Enhanced Water Gas Shift
- The residual steel gases, mainly composed by CO, CO₂, H₂, N₂ are treated in the WGS + SEWGS unit to produce an H₂/N₂ stream suitable for ammonia production and a CO₂ stream, partly used for urea synthesis and partly sent to storage


CO₂ Capture Process Integration Final Modelling Step to Determine the Overall Plant KPIs

A real case: the INITIATE project

SEWGS technology

- What is necessary to take into account when the SEWGS carbon capture process is integrated in the plant layout?
 - 1. SEWGS inlet temperature
 - 2. SEWGS working pressure
 - 3. SEWGS steam demand
 - 4. WGS reactor(s) inlet temperature
 - 5. WGS reactor(s) working pressure
 - 6. WGS reactor(s) steam demand



Key Performace Indicators

	Base case	Reference case	INITIATE
[t/d]	6240	6240	6240
[t/d]	602	760	558
[MW]	3	86	383
[t/d]	9249	9249	9249
[t/d]	1500	1500	1500
[t/d]	18785	13301	5153
[GJ]	2.32E+05	2.40E+05	2.30E+05
[%]		31.88	84.77
[GJ/t _{CO2}]		1.28	-0.13
	[t/d] [MVV] [t/d] [t/d] [t/d] [GJ] [%]	[t/d] 6240 [t/d] 602 [MW] 3 [t/d] 9249 [t/d] 1500 [t/d] 18785 [GJ] 2.32E+05 [%] 9	[t/d] 6240 6240 [t/d] 602 760 [MVV] 3 86 [t/d] 9249 9249 [t/d] 1500 1500 [t/d] 18785 13301 [GJ] 2.32E+05 2.40E+05 [%] - 31.88

Renewable energy scenario

Final remarks

- Basis of Design is fundamental and simplifies the following steps
- Aspen Plus main tool for plant simulation and for heat and mass balances
- Calculation of KPIs
- INITIATE project
 - 1. Industrial symbiosis
 - 2. CA = 85% in a renewable energy scenario
 - 3. SPECCA < 0 GJ/ t_{CO2} in a renewable energy scenario

A STEPWISE PROJECT

The INITIATE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958318